Locus-specific Retention Predictor (LsRP): A Peptide Retention Time Predictor Developed for Precision Proteomics

نویسندگان

  • Wenyuan Lu
  • Xiaohui Liu
  • Shanshan Liu
  • Weiqian Cao
  • Yang Zhang
  • Pengyuan Yang
چکیده

The precision prediction of peptide retention time (RT) plays an increasingly important role in liquid chromatography-tandem mass spectrometry (LC-MS/MS) based proteomics. Owing to the high reproducibility of liquid chromatography, RT prediction provides promising information for both identification and quantification experiment design. In this work, we present a Locus-specific Retention Predictor (LsRP) for precise prediction of peptide RT, which is based on amino acid locus information and Support Vector Regression (SVR) algorithm. Corresponding to amino acid locus, each peptide sequence was converted to a featured locus vector consisting of zeros and ones. With locus vector information from LC-MS/MS data sets, an SVR computational process was trained and evaluated. LsRP finally provided a prediction correlation coefficient of 0.95~0.99. We compared our method with two common predictors. Results showed that LsRP outperforms these methods and tracked up to 30% extra peptides in an extraction RT window of 2 min. A new strategy by combining LsRP and calibration peptide approach was then proposed, which open up new opportunities for precision proteomics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retention Time of Peptides in Liquid Chromatography Is Well Estimated upon Deep Transfer Learning

A fully automatic prediction for peptide retention time (RT) in liquid chromatography (LC), termed as DeepRT, was developed using deep learning approach, an ensemble of Residual Network (ResNet) and Long Short-Term Memory (LSTM). In contrast to the traditional predictor based on the hand-crafted features for peptides, DeepRT learns features from raw amino acid sequences and makes relatively acc...

متن کامل

Kernel-based machine learning on sequence data from proteomics and immunomics

Biology is a large application area for machine learning techniques. Applications range from gene start prediction over prediction of drug activity to the prediction of the three-dimensional structure of proteins. This thesis deals with kernel-based machine learning in proteomics and immunomics applications. In all applications, we are interested in predicting properties of peptides, which are ...

متن کامل

Identification of Peptides in Proteomics Supported by Prediction of Peptide Retention by Means of Quantitative Structure–retention Relationships

Quantitative structure–retention relationships (QSRR) have been derived for prediction of RP-HPLC retention of peptides obtained by online digestion of myoglobin. To characterize the structure of a peptide quantitatively, and then to predict its retention time under gradient HPLC conditions, the structural descriptors used were: the logarithm of the sum of retention times of the amino acids of ...

متن کامل

An Algorithm for Feature Finding in LC/MS Raw Data

Liquid chromatography coupled with mass spectrometry is an established method in shotgun proteomics. A key step in the data processing pipeline is to transform the raw data acquired by the mass spectrometer into a list of features. In this context, a feature is defined as the twodimensional integration with respect to retention time (RT) and mass-over-charge (m/z) of the eluting signal belongin...

متن کامل

Proteomic data mining using predicted peptide chromatographic retention times

Correct identification of proteins from peptide fragments is important for proteomic analyses. Peptides are initially separated by Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) before Mass Spectrometry (MS) identification. At the present time, peptide fragment retention (separation) time is not used as a useful scoring filter for identification of the peptide fragments and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017